АДАПТИВНОЕ РАСПОЗНАВАНИЕ СИМВОЛОВ. (В. Л. Арлазаров, В.В. Троянкер, Н.В. Котович). ПРОДОЛЖЕНИЕ
Второй класс алгоритмов - безшрифтовые или шрифтонезависимые, т.е. алгоритмы, не имеющие априорных знаний о символах, поступающих к ним на вход. Эти алгоритмы измеряют и анализируют различные характеристики (признаки), присущие буквам как таковым безотносительно шрифта и абсолютного размера (кегля), которым они напечатаны [3]. В предельном случае для шрифтонезависимого алгоритма процесс обучения может отсутствовать. В этом случае характеристики символов измеряет, кодирует и помещает в базу программы сам человек. Однако на практике, случаи, когда такой путь исчерпывающе решает поставленную задачу, встречаются редко. Более общий путь создания базы характеристик заключается в обучении программы на выборке реальных символов.
К недостаткам данного подхода можно отнести следующие факторы:
- Реально достижимое качество распознавания ниже, чем у шрифтовых алгоритмов. Это связано с тем, что уровень обобщения при измерениях характеристик символов гораздо более высокий, чем в случае шрифтозависимых алгоритмов. Фактически это означает, что различные допуски и огрубления при измерениях характеристик символов для работы безшрифтовых алгоритмов могут быть в 2-20 раз больше по сравнению с шрифтовыми.
- Следует считать большой удачей, если безшрифтовый алгоритм обладает адекватным и физически обоснованным, т.е. естественно проистекающим из основной процедуры алгоритма, коэффициентом надежности распознавания. Часто приходится мириться с тем, что оценка точности либо отсутствует, либо является искусственной. Под искусственной оценкой подразумевается то, что она существенно не совпадает с вероятностью правильного распознавания, которую обеспечивает данный алгоритм.
Достоинства этого подхода тесно связаны с его недостатками. Основными достоинствами являются следующие:
- Универсальность. Это означает с одной стороны применимость этого подхода в случаях, когда потенциальное разнообразие символов, которые могут поступить на вход системы, велико. С другой стороны, за счет заложенной в них способности обобщать, такие алгоритмы могут экстраполировать накопленные знания за пределы обучающей выборки, т.е. устойчиво распознавать символы, по виду далекие от тех, которые присутствовали в обучающей выборке.
- Технологичность. Процесс обучения шрифтонезависимых алгоритмов обычно является более простым и интегрированным в том смысле, что обучающая выборка не фрагментирована на различные классы (по шрифтам, кеглям и т.д.). При этом отсутствует необходимость поддерживать в базе характеристик различные условия совместного существования этих классов (некоррелированность, не смешиваемость, систему уникального именования и т.п.). Проявлением технологичности является также тот факт, что часто удается создать почти полностью автоматизированные процедуры обучения.
- Удобство в процессе использования программы. В случае, если программа построена на шрифтонезависимых алгоритмах, пользователь не обязан знать что-либо о странице, которую он хочет ввести в компьютерную память и уведомлять об этих знаниях программу. Также упрощается пользовательский интерфейс программы за счет отсутствия набора опций и диалогов, обслуживающих обучение и управление базой характеристик. В этом случае процесс распознавания можно представлять пользователю как "черный ящик" (при этом пользователь полностью лишен возможности управлять или каким-либо образом модифицировать ход процесса распознавания). В итоге это приводит к расширению круга потенциальных пользователей за счет включения в него людей обладающих минимальной компьютерной грамотностью.
СИНТЕЗ ДВУХ ПОДХОДОВ - ПУТЬ К СУЩЕСТВЕННОМУ УВЕЛИЧЕНИЮ КАЧЕСТВА РАСПОЗНАВАНИЯ
Выше рассматривались особенности, достоинства и недостатки двух подходов к созданию алгоритмов ОРС. Из обзора следует, что достоинства и недостатки обоих подходов определяются одними и теми же свойствами алгоритмов: большей либо меньшей степенью универсальности, степенью достижимой точности распознавания и т.п. Сравнительные недостатки и достоинства обоих подходов сведены в таблицу.
Свойства |
Шрифтовые алгоритмы |
Безшрифтовые алгоритмы |
Универсальность |
Малая степень универсальности, обусловленная необходимостью предварительного обучения всему, что предъявляется для распознавания |
Большая степень универсальности, обусловленная независимостью обучающей выборки от какой-либо системы априорной классификации символов |
Точность распознавания |
Высокая, обусловлена детальной классификацией символов в процессе обучения. А также тем, что материал распознавания находится строго в рамках классов, созданных в процессе обучения |
Низкая (в сравнении с шрифтовыми алгоритмами), что обусловлено высокой степенью обобщения и огрубленными измерениями характеристик символов |
Технологичность |
Низкая (в сравнении с безшрифтовыми алгоритмами), обусловлена различными накладными расходами, связанными с поддержкой классификации символов |
Высокая, обусловлена отсутствием какой-либо априорной системы классификации символов |
Поддержка процесса распознавания со стороны пользователя |
Необходима на этапе обучения для задания системы классификации и на этапе распознавания для указания конкретных классов символов |
Не требуется |
|
|
|
|